

Case Study

Under Balanced Drilling Procedures to Reduces Drilling Fluid Losses and Rig Time in Fractured Formation

Challenge

- Drilling in Lower Malm formation has historically been challenging due the formation composition of vugular limestone and its fractured nature. This results in a below-normal fracture gradient (± 0.75 SG).
- High drilling fluid losses and associated rig time attempting to heal the losses increased total well costs.

Solution

- Alpine Energy Services in collaboration with Viking Services provided engineering, equipment, and personnel to drill though the Malm formation.
- Alpine Energy Services in collaboration with Viking Services provided engineering, equipment, and personnel to drill though the Malm formation.
- If the fracture gradient was below 0.35 SG, a contingency plan was established to drill with Foam system

Successfully Minimized Fluid Losses to the Malm Formation

When drilling into the vugular Lower Malm formation, UBD drastically mitigated loss rates and reduce non drilling time required to re-establish circulation. The use of UBD lowered the ECD to 0.70 SG, by injecting 45 m³/min Nitrogen and 1040 L/min light polymer water-based fluid. Fluid losses while drilling the 8 1/2" interval were substantially lower compared to offset wells; 450 m³ with UBD compared to 5050 m³ with conventional methods - a reduction of 91%.

See Table 1: Comparing Losses of conventionally drilled offset well to UBD well.

Quickly Resolved Fluid Losses Allowing Operator to Drill Ahead with Minimal Delays

The ability to quickly convert from a conventional WBM system to an Underbalanced system drastically reduced the total number of operating days on the well. The UBD well was drilled conventionally until losses were encountered. At this point it was approximately 3 hours to fill the large vugular void and continue drilling with a two-phase system. Time spent to circulating to cure losses was reduced by 27.7 days compared to the offset well.

See Figure-2: Days vs Depth Drilling Curve.

Results

- The operator was able to drill to TD ahead of drilling curve and below AFE cost.
- The downhole pressure was maintained below the fracture gradient minimizing fluid losses.

Comparing Conventional Well to UBD

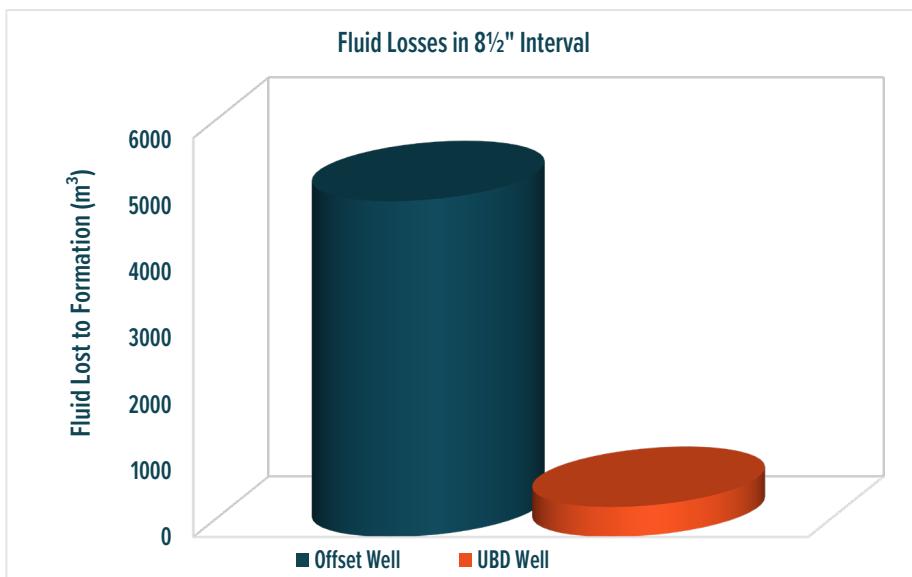


Figure 1: Comparing Fluid Losses in 8 ½" Intervals

Section	Unit	Offset Well			UBD Well	
		Inch	8½"	6"	Total	8½"
Interval	m		2285-3014	3014-3698	2285-3698	2100-2978
Length	m		729	684	1413	878
Mud Type		KCl Polymer	KCl Polymer	KCl Polymer	Two-phase (N2 & water)	
MW / ECD	S.G.	1.05 - 1.10 / +	1.05 / +	1.05 - 1.10 / +	1.00 / 0.7	
Losses in Formation	m³	5050	2811	7861	450	
Losses	m³/100m	693	411	556	51	
Percent Fluid Loss Increase	Compared to UBD Well	91%	84%	94%	-	

Table 1: Comparing Losses of conventionally drilled offset well to UBD well.

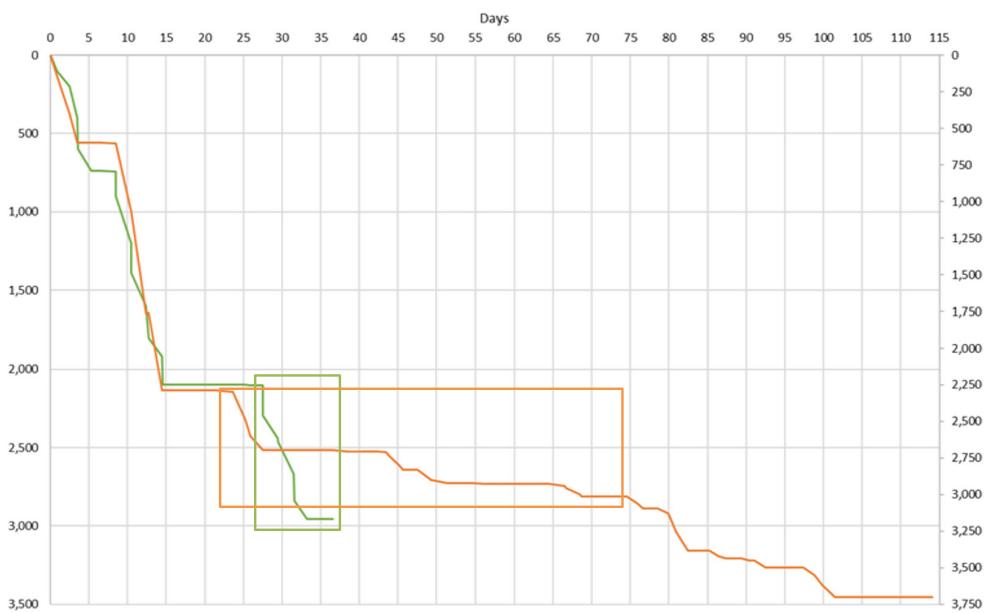


Figure 2: Days vs Depth Drilling Curve. (graph provided by HUNT International)

- Green: UBD well (left axis depth)
- Orange: Conventional well (right axis depth)
- Box: 8 ½" Interval's